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Robust and Trustworthy AI

AI impacts us in a profound way

Rapidly becomes more autonomous 
with self-made critical decisions

Problem: a magnitude of order more critical than 
the rate of AI growth if things go wrong!
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Robust and Trustworthy AI

AI impacts us in a profound way

Rapidly becomes more autonomous 
with self-made critical decisions

1. Tesla Autopilot kills
2. IBM Watson recommends wrong cancer treatment
3. LLM-based Chatbot [Elisa] encourages suicide
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Robust and Trustworthy AI

Amazon’s AI Recruitment Tool Bias, Microsoft Chatbot 
Tay Offensive Tweets, Apple Card Gender Bias, Uber’s 
Greyball program, …. Google Photo Misclassification 

DSAI Summit 2023, 

Monash University, Faculty of IT

1. Tesla Autopilot kills
2. IBM Watson recommends wrong cancer treatment
3. LLM-based Chatbot [Elisa] encourages suicide
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Robust vs Trustworthy AI

Robust AI: consistent performance
o missing/incomplete data, out-of-distribution shift, 

noisy, unreliable scenarios, day/light, …

o under deliberate adversarial attacks to disrupt its 
functioning.

Trustworthy AI: robustness + 
transparent, accountable, bias-free
o bring confidence and trust to AI adoption to 

everyday activities.

Vital to (Human + AI) endeavour!

Liu et al., Trustworthy AI: A Computational Perspective, ACM Computing Survey, 2021.

Other related concepts

DSAI Summit 2023, 

Monash University, Faculty of IT
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Heaven D.,  Deep Trouble for Deep Learning, Vol 574 Nature, 2019.

Adversarial Attack and Robustness

Deliberately exploit loopholes in the 
AI system to disrupt its functions

Deep learning: turns out, it’s very 
easy to hack DNNs!

+ →

𝜖- small perturbation

DSAI Summit 2023, 

Monash University, Faculty of IT
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Adversarial Attack and Robustness

Deliberately exploit loopholes in the 
AI system to disrupt its functions

Deep learning: turns out, it’s very 
easy to hack DNNs!

Heaven D.,  Deep Trouble for Deep Learning, Vol 574 Nature, 2019.

+ →

DSAI Summit 2023, 

Monash University, Faculty of IT

Targeted Attack
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Adversarial Attack and Robustness

Adversarial attacks

Backdoor attacks

Poison attacks

Inference attacks

...

Visual: images, videos

Auditory: speech, music

Text: sentiment, 

Graph

….

Heaven D.,  Deep Trouble for Deep Learning, Vol 574 Nature, 2019.

DSAI Summit 2023, 

Monash University, Faculty of IT

Type of Attacks Domain Attacked

Defence: Adversarial Training, Certified Robustness
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Notation

𝕀 condition = 1 if condition is true; 0 otherwise

o E.g. 𝕀{1=1} = 1, 𝕀{1=2} = 0

Supervised learning: ℎ𝜃:𝒳 → 𝒴, 𝜃 ∈ Ω
o Input space 𝑥 ∈ 𝒳, output space 𝑦 ∈ 𝒴

o Prediction space:

▪ ℎ𝜃 𝑥 ∈ Δ 𝒴 −1 (simplex)

▪ ℎ𝜃
𝑗
𝑥 = 𝑗th element, 𝑖. 𝑒. , 𝑝(𝑦 = 𝑗|𝑥)

▪ ො𝑦 = argmax
𝑗

ℎ𝜃 𝑥 , ො𝑦 ∈ 𝒴

𝑥

ℎ𝜃 𝑥

𝑦 ∈ }{cat, dog

𝑆: a Polish space, endowed with metric 𝑐(𝑣, 𝑣′)
o 𝑐(𝑣, 𝑣′): non-negative, symmetric, triangle inequality

o We  usually consider product spaces: 𝑆 = 𝒳 ×𝒴 or 𝑆 = 𝒳 ×𝒳 ×𝒴

o 𝜇, 𝑣 : probability measures, 𝑇: 𝑆 → 𝑆 : measurable map

o 𝑇#𝜇 : push-forward measure of 𝜇 via 𝑇

=
0.7
0.3

cat
dogℎ𝜃(   )

𝜖-vicinity ball, 𝜖 > 0, ℬ𝜖
𝑑 𝑥 = 𝑥′: 𝑑 𝑥, 𝑥′ < 𝜖

o centred at 𝑥 induced by metric 𝑑 on 𝒳

𝑥
𝜖 𝑥′

ℬ𝜖
𝑑 𝑥

𝑑 𝑥, 𝑥′

𝒳

𝑥 𝑥′
𝑑(𝑥, 𝑥′)

𝑆 = 𝒳 × 𝒴

(𝑥, 𝑦)
𝑐(𝑣, 𝑣′)

(𝑥′, 𝑦′)

DSAI Summit 2023, 

Monash University, Faculty of IT
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Key concepts

Given (𝑥, 𝑦) and a classifier ො𝑦 = ℎ(𝑥)

For now, 𝑥′ is said to be ‘similar’ to 𝑥 if 𝑥′ ∈ ℬ𝜖
𝑑 𝑥

Untargeted  attack: find adversarial 𝑥′ such that:
o 𝑥′ is similar to 𝑥, but classified differently, i.e., ℎ 𝑥′ ≠ 𝑦

Targeted attack: let 𝑦∗ ≠ 𝑦,  find 𝑥′ such that:
o 𝑥′ is similar to 𝑥, but classified as 𝑦∗ instead, i.e,  ℎ(𝑥′) = 𝑦∗

Adversarial training: 
o Given training 𝐷 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, … , 𝑛 , for each 𝑥𝑖 find its 

adversarial 𝑥𝑖
′ and form 𝐷′ = { 𝑥𝑖

′, 𝑦𝑖 }

o Use both 𝐷 and 𝐷′ for training

Defence/adversarial robustness
o Find ℎ(𝑥) so that ℎ(𝑥) correctly classifies 𝑥 and its adversarial 𝑥′

to be in the same class 𝑦.

+ →

+ →

DSAI Summit 2023, 

Monash University, Faculty of IT
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Adversarial Training (AT) 

Projected Gradient Descent (PGD)
o Find adversarial 𝑥′ = 𝑥 + 𝛿∗ where Δ𝜖 =

{𝛿: 𝛿 ∞ ≤ 𝜖} and:

𝛿∗ = argmax
𝛿∈Δ𝜖

ℓ ℎ𝜃 𝑥 + 𝛿 , 𝑦

Supervised training: let 𝑥, 𝑦 ~𝑃𝒳×𝒴 , 

o CE ℎ𝜃 𝑥 , 𝑦 = CE ℎ𝜃 𝑥 , 0, … , 1, … , 0 = − ln ℎ𝜃
𝑦
(𝑥)

o Individual loss:  ℓ𝑥,𝑦 𝜃 = CE ℎ𝜃 𝑥 , 𝑦

o Loss objective: ℓ 𝜃 = 𝔼
𝑥,𝑦 ~𝑃

ℓ𝑥,𝑦(𝜃)

PGD-AT learning loss:
o Let 𝑥′ be adversarial sample of 𝑥 via PGD:

𝑥

ℎ𝜃 𝑥

𝑦

Input rate 𝜂 and number of steps 𝑘:
• 𝑥0 = 𝑥 + unifom −𝜖, 𝜖
• 𝑥𝑡 = 𝑥𝑡−1 + 𝜂𝛻𝑥𝑙 ℎ 𝑥 , 𝑦 |𝑥𝑡−1
• 𝑥𝑡 = Proj𝐵𝜖 𝑥 𝑥𝑡
• Run for 𝑘 steps, then set 𝑥′ = 𝑥𝑘

= CE ℎ𝜃 𝑥 , 𝑦 + 𝛽 sup
𝑥′∈ℬ𝜖(𝑥)

CE ℎ𝜃 𝑥′ , 𝑦

ℓ𝑥,𝑦
pgd

(𝜃) = ℓ𝑥(𝜃) + 𝛽 sup
𝑥′

ℓ𝑥′(𝜃, 𝑦)

*Madry et. al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR, 2019.

cat

𝑥′ = 𝑥 + 𝛿∗
𝑥 𝑥′

𝛿∗

ϵ

ℓ𝑥(𝜃, 𝑦)

DSAI Summit 2023, 

Monash University, Faculty of IT

dog
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Three SOTA AT approaches

AT-TRADES (Zhang et. al, 2019)

AT-MART (Wang et al., 2019):

o Define BCE ℎ𝜃 𝑥 , 𝑦 = − log ℎ𝜃
𝑦
𝑥 − log 1 − max

𝑘≠𝑦
ℎ𝜃
𝑦
(𝑥)

o Extend TRADES to take into account the prediction confidence 

inf
𝜃
𝔼
𝑃
BCE ℎ𝜃 𝑥 , 𝑦 + 𝛽 1 − ℎ𝜃

𝑦
(𝑥) sup

𝑥′
D𝐾𝐿 ℎ𝜃 𝑥′ , ℎ𝜃 𝑥

AT-PGD learning objective (Madry, et al, 
2019):
o PGD-AT loss:

ℓ𝑥,𝑦
pgd

(𝜃)= CE ℎ𝜃 𝑥 , 𝑦 + 𝛽 sup
𝑥′∈ℬ𝜖(𝑥)

CE ℎ𝜃 𝑥′ , 𝑦

o Learning objective: 𝜃∗ = argmin
𝜃

𝔼ℙ[ℓ𝑥
PGD(𝜃)], i.e,

inf
𝜃
𝔼
𝑃
CE ℎ𝜃 𝑥 , 𝑦 + 𝛽 sup

𝑥′∈ℬ𝜖(𝑥)
CE ℎ𝜃 𝑥′ , 𝑦

mitigate worst-case

maximise diversity

inf
𝜃
𝔼
𝑃
CE ℎ𝜃 𝑥 , 𝑦 + 𝛽 sup

𝑥′
D𝐾𝐿 ℎ𝜃 𝑥′ , ℎ𝜃 𝑥

ℓ𝑥,𝑦
trades(𝜃)

ℓ𝑥,𝑦
mart(𝜃)

DSAI Summit 2023, 

Monash University, Faculty of IT
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Wasserstein and Optimal Transport (OT)

inf
𝑇:𝑇#𝜇=𝜈

න
𝒳

𝑐 𝑥, 𝑇 𝑥 d𝜇(𝑥)

1781

Monge

Wasserstein distance

𝑊𝑝 = inf
𝜋∈Π

න
𝒳×𝒴

𝑥 − 𝑦 𝑝 1/𝑝 d𝜋

Given 𝜇, 𝜈, find 𝑇 s.t.

o 𝑇#𝜇 = 𝜈: its minimal cost

o 𝑇: (optimal) transport map

1975150 years later

Kantorovich
(Nobel prize, economics)

𝜋∗ = inf
𝜋∈Π

න
𝒳×𝒴

𝑐 𝑥, 𝑦 d𝜋

𝜋∗: (optimal) transport plan

Define coupling Π whose marginals 
are 𝜇 and 𝑣

𝑊1 = sup
𝑓+𝑔≤𝑐,𝑓,𝑔∈ℒ1

𝔼
𝜇
𝑓 𝑥 + 𝔼

𝜈
𝑔 𝑦

Dual formulation
Now computational friendly

2010

Villani
Field Medal

Figalli
Field Medal

20182017

Wasserstein GAN 
(ICML’17)

Ours: WMeans
(ICML’17, JMLR’21)

40 years later

OT explosion in ML

Possess a different geometry from standard 
divergences such KL or Euclidean

A (very) brief history

DSAI Summit 2023, 

Monash University, Faculty of IT

Image credit: Cuturi., Computational Optimal Transport, NeuRIPS 2021.
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Wasserstein Risk Minimization (WRM)

General setting:
o Let 𝑣~𝑃 on metric space 𝑆

o 𝑓 𝑣 : 𝑆 → ℝ is a risk/reward function 

o Seek 𝑄 on 𝑆 such that:  
sup
𝑄

𝔼
𝑄:dist 𝑄,𝑃 <𝜖

𝑓 𝑣

WRM (Sheena et al’18) = DRO + MLDistributional Robustness
DRO = optimisation + statistics

Key result: if Wasserstein distance is 
used, then:

sup
𝑄:𝑊𝑐 𝑄,𝑃 <𝜖

𝔼
𝑄
𝑓 𝑣

is equivalent to

inf
𝜆≥0

𝜆𝜖 + 𝔼
𝑣~𝑃

sup
𝑣′

(𝑓 𝑣′ − 𝜆𝑐(𝑣, 𝑣′)

𝒳 ∋ 𝑥

ℎ𝜃 𝑥

𝑦 ∈ 𝒴

o Now let 𝑆 = 𝒳 × 𝒴 and 𝑣 = 𝑥, 𝑦 , 𝑣′ = (𝑥′, 𝑦′) on 𝑆

o Define metric: 𝑐 𝑣, 𝑣′ = 𝑑(𝑥, 𝑥′) + ∞ × 𝕀 𝑦≠𝑦′

o And risk: 𝑓 𝑣 = ℓ𝑥,𝑦 𝜃 = ℓ(ℎ𝜃 𝑥 , 𝑦)

o Then learning 𝜃 under DRO becomes (WRM)

inf
𝜃

sup
𝑄:𝑊𝑐 𝑄,𝑃 <𝜖

𝔼
𝑄
[ℓ(ℎ𝜃 𝑥 , 𝑦)]

o Consider a typical supervised setting:

DSAI Summit 2023, 

Monash University, Faculty of IT
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From AT to Distributional AT

Recall: standard AT looking for pairwise 
𝑥, 𝑥′ to improve robustness.
o e.g., for PGD:

inf
𝜃
𝔼
𝑃
CE ℎ𝜃 𝑥 , 𝑦 + 𝛽 sup

𝑥′∈ℬ𝜖(𝑥)
CE ℎ𝜃 𝑥′ , 𝑦

inf
𝜃

sup
𝑄:𝑊 𝑄,𝑃 ≤𝜖

𝔼
𝑄
[ℓ(ℎ𝜃 𝑥 , 𝑦)]

+ →

DRO/WRM looks for the entire adversarial 
distribution 𝑄 in the vicinity of data 
distribution 𝑃, i.e.,

ℓ𝑥,𝑦
pgd

(𝜃)

Is there a theoretical tool to provide a   
connection between them?

First attempt using WRM for PGD-AT:
o 𝑆 = 𝒳 × 𝒴, c 𝑣, 𝑣′ = 𝑑(𝑥, 𝑥′) + ∞ × 𝕀 𝑦≠𝑦′

o Let 𝑓 𝑣 = 𝑓 𝑥, 𝑦 = ℓ𝑥,𝑦
pgd

(𝜃), WRM becomes:

inf
𝜃

sup
𝑄:𝑊𝑐 𝑄,𝑃 <𝜖

𝔼
𝑄
[ℓ(ℎ𝜃 𝑥 , 𝑦)]

Not quite, but almost, by letting 𝜖 → 0. 

And fail to solve for more complex AT methods, 

such as ℓ𝑥
trades and ℓ𝑥

mart

DSAI Summit 2023, 

Monash University, Faculty of IT
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Our Unified Distribution Robustness (UDR)
Bui, et. al, ICLR 2022

Solution sketch: 
o Let 𝑆 = 𝒳 ×𝒳 ×𝒴:

▪ space of 𝑥, space of its adversarial 𝑥′ and output

o Use 𝑝 𝑥, 𝑦 = 𝑝 𝑦 𝑥 𝑝 𝑥 , write 𝑃𝒳×𝒴 = 𝑃𝒳 × 𝑃.|𝒳
o Denote 𝑃∗ the distribution over specific 

configuration 𝑥, 𝑥, 𝑦 where 𝑥~𝑃𝒳 and 𝑦~𝑃.|𝒳.

o 𝑃∗ is a distribution on 𝑆, let seek 𝑄 on 𝑆 such that 
𝑊𝑐∗ 𝑄, 𝑃

∗ < 𝜖. 

▪ Let 𝑣 = 𝑥, 𝑥, 𝑦 ~𝑃∗ and 𝑣′ = 𝑥′, 𝑥′′, 𝑦′ ~𝑄, metric 
𝑐∗ ⋅ deliberately designed:

▪ 𝑐∗ 𝑣, 𝑣′ = 𝑑 𝑥, 𝑥′ +∞ × 𝑑(𝑥, 𝑥′′) + ∞ × 𝕀 𝑦=𝑦′

▪ 𝑐∗ 𝑣, 𝑣′ < ∞, then 𝑥′′ = 𝑥, 𝑦′ = 𝑦 and 𝑥′ → 𝑥

o Define a unified risk function 𝑔𝜃 𝑣′ for UDR-PGD, 
URD-TRADES and URD-MART respectively:

=

CE ℎ𝜃 𝑥′′ , 𝑦′ + 𝛽 sup
𝑥′∈ℬ𝜖(𝑥)

CE ℎ𝜃 𝑥′ , 𝑦′

CE ℎ𝜃 𝑥′′ , 𝑦′ + 𝛽D𝐾𝐿 ℎ𝜃 𝑥′ , ℎ𝜃 𝑥′′

BCE ℎ𝜃 𝑥′′ , 𝑦′ + 𝛽 1 − ℎ𝜃
𝑦
(𝑥′′) D𝐾𝐿 ℎ𝜃 𝑥′ , ℎ𝜃 𝑥′′

Key results:
o The primal DRO  inf

𝜃
sup

𝑄:𝑊𝑐 𝑄,𝑃∗ <𝜖
𝔼
𝑄
𝑔𝜃 𝑣′ becomes

inf
𝜃,𝜆≥0

𝜆𝜖 + 𝔼
𝑣~𝑃∗

sup
𝑣′

(𝑔𝜃 𝑣′ − 𝜆𝑐∗(𝑣, 𝑣′)

o With specific 𝑐∗(𝑣, 𝑣′), this is the same as

inf
𝜃,𝜆≥0

𝜆𝜖 + 𝔼
𝑥~𝑃

sup
𝑥′∈𝒳

(𝑔𝜃 𝑥′, 𝑥, 𝑦 − 𝜆𝑑(𝑥, 𝑥′)

o Theorem: let 𝑑∗ 𝑥, 𝑥′ = 𝑑 𝑥, 𝑥′ if 𝑥′ ∈ ℬ𝜖
𝑑(𝑥) and ∞

otherwise, then:

inf
𝜃,𝜆≥0

𝜆𝜖 + 𝔼
𝑥~𝑃

sup
𝑥′∈𝒳

(𝑔𝜃 𝑥′, 𝑥, 𝑦 − 𝜆𝑑∗(𝑥, 𝑥′)

is equivalent to
inf
𝜃
𝔼
𝑃

sup
𝑥′∈ℬ𝜖(𝑥)

𝑔𝜃 𝑥′, 𝑥, 𝑦

o Claims: 

▪ AT-method are special cases of UDR-method

▪ Richer expressive capacity

▪ Substantially different from WRM (Shina etal ‘18, 
Blanchet & Murphy ’19)

DSAI Summit 2023, 

Monash University, Faculty of IT

Dr Trung LeTony Bui
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Learning with UDR
Bui, et. al, ICLR 2022

Note 𝑑∗(𝑥, 𝑥′) is non-differentiable
outside the ball ℬ𝜖(𝑥), define a smoothed 
version መ𝑑 𝑥, 𝑥′ :

𝑑(𝑥, 𝑥′)𝕀 𝑑 𝑥,𝑥′ <𝜖 + 𝜖 +
𝑑 𝑥, 𝑥′ − 𝜖

𝜏
𝕀 𝑑 𝑥,𝑥′ ≥𝜖

Final optimisation form:

inf
𝜃,𝜆≥0

𝜆𝜖 + 𝔼
𝑥~𝑃

sup
𝑥′∈𝒳

(𝑔𝜃 𝑥′, 𝑥, 𝑦 − 𝜆 መ𝑑(𝑥, 𝑥′)

1. For each (𝑥𝑖 , 𝑦𝑖) learn adversarial sample: 

𝑥𝑖
adv = argmax

𝑥′
𝑔𝜃 𝑥′, 𝑥𝑖 , 𝑦𝑖 − 𝜆 መ𝑑(𝑥𝑖 , 𝑥

′)

2. Update parameter 𝜆 (take derivative, set to 0): 

𝜆𝑙 = 𝜆𝑙−1 − 𝜂𝜆 𝜖 −
1

𝑁


𝑖

መ𝑑(𝑥𝑖
adv, 𝑥𝑖)

3. Update model parameter 𝜃: 

𝜃𝑙 = 𝜃𝑙−1 −
𝜂𝜃
𝑁


𝑖

𝑁

∇𝑔𝜃 𝑥𝑖
adv, 𝑥𝑖 , 𝑦𝑖 ቚ

𝜃𝑙−112 3

DSAI Summit 2023, 

Monash University, Faculty of IT
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Our Unified Distribution Robustness (UDR)
Bui, et. al, ICLR 2022

Key experimental results
o UDR-methods outperform in Whitebox Attack 

with fixed 𝜖

o Methods can extend beyond PGD, TRADES, 
MART, but also new methods: Auto-Attack, AWP, 
C&W, and so on.

o Consistent performance against various attack 
strength (e.g., varying 𝜖)

Code: https://github.com/tuananhbui89/Unified-Distributional-Robustness

See our poster for more details and results

DSAI Summit 2023, 

Monash University, Faculty of IT
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Selected work on Optimal Transport for ML:

• Tutorial on “Optimal Transport”, ACML 2021

• Two survey papers: IJCAI’21 (for Generative AI), IJCAI’21 (for topic 
models)

• ICML’23, AISTAT’23, ICASSP’23

• NeuRIPS’22, ICML’22, ICLR’22, UAI’22, AISTATS’22

• JMLR’21, NeurIPS’21, ICCV’21, ICML’21, IJCAI’21, UAI’21, 
ICLR’21, AAAI’21

• NeurIPS’20, , ICML’20, ECCV’20, 

• ICLR’19, IJCAI’19,  ICML’17

Want to know more ?
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