Small Change Matters Towards Robust Deep Learning with Optimal Transport

Dinh Phung dinh.phung@monash.edu DSAI Summit 2023, Monash University, Faculty of IT

Robust and Trustworthy AI

- AI impacts us in a profound way
- Rapidly becomes more autonomous with self-made critical decisions

Problem: a magnitude of order more critical than the rate of AI growth if things go wrong!

Tesla Autopilot Crashes: With at Least a Dozen Dead, 'Who's at Fault, Man or Machine?'

After a Tesla car reportedly on autopilot recently killed two people in China and many other drivers report self-driving system malfunctions, the automaker is facing increased scrutiny over its technology

by Lauren Richards — December 1, 2022 in Business, Corporations, Society, Tech

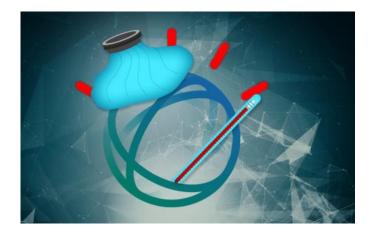
DSAI Summit 2023, 2 Monash University, Faculty of IT

Robust and Trustworthy AI

- AI impacts us in a profound way
- Rapidly becomes more autonomous with self-made critical decisions

Problem: a magnitude of order more critical than the rate of AI growth if things go wrong!

2. IBM Watson recommends wrong cancer treatment



EXCLUSIVE

STAT+

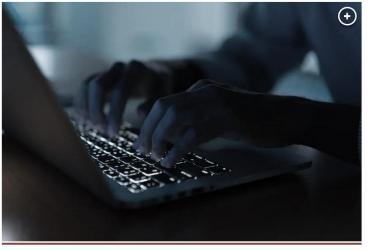
OSAI Summit 2023, 3 Nonash University, Faculty of IT

IBM's Watson supercomputer recommended 'unsafe and incorrect' cancer treatments, internal documents show

Robust and Trustworthy AI

- AI impacts us in a profound way
- Rapidly becomes more autonomous with self-made critical decisions

Problem: a magnitude of order more critical than the rate of AI growth if things go wrong!



A Belgian father reportedly committed suicide following conversations about climate change with an artificial intelligence chatbot that was said to have encouraged him to sacrifice himself to save the planet.

- 1. Tesla Autopilot kills
- 2. IBM Watson recommends wrong cancer treatment

🚹 💟 🕞 🖂 🚱

3. LLM-based Chatbot [Elisa] encourages suicide

WEIRD BUT TRUE

Married father commits suicide after encouragement by AI chatbot: widow

By Ben Cost

March 30, 2023 | 5:59pm | Updated

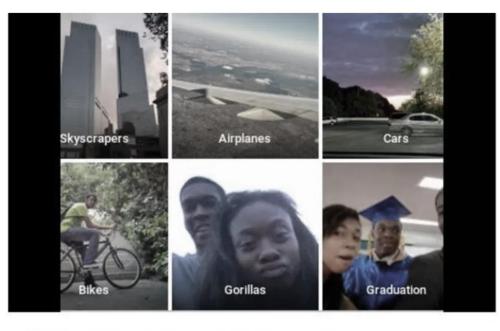
47 Comments

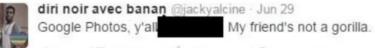
SAI Summit 2023.

Monash University, Faculty of IT

Robust and Trustworthy Al

Amazon's Al Recruitment Tool Bias, Microsoft Chatbot Tay Offensive Tweets, Apple Card Gender Bias, Uber's Greyball program, **Google Photo Misclassification**





- 1. Tesla Autopilot kills
- 2. IBM Watson recommends wrong cancer treatment

DSAI Summit 2023,

Monash University, Faculty of IT

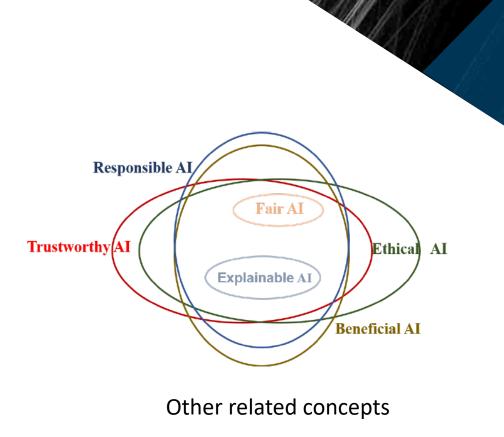
5

3. LLM-based Chatbot [Elisa] encourages suicide

Robust vs Trustworthy Al

Robust AI: consistent performance

- missing/incomplete data, out-of-distribution shift, noisy, unreliable scenarios, day/light, ...
- under deliberate <u>adversarial</u> attacks to disrupt its functioning.
- Trustworthy AI: robustness + transparent, accountable, bias-free
 - bring confidence and trust to AI adoption to everyday activities.
- Vital to (Human + AI) endeavour!



DSAI Summit 2023,

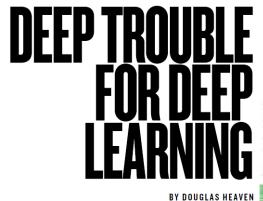
Monash University, Faculty of IT

Liu et al., Trustworthy AI: A Computational Perspective, ACM Computing Survey, 2021.

Adversarial Attack and Robustness

- Deliberately exploit loopholes in the Al system to disrupt its functions
- Deep learning: turns out, it's very easy to hack DNNs!

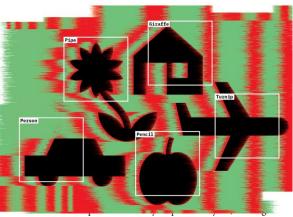
Heaven D., Deep Trouble for Deep Learning, Vol 574 Nature, 2019.



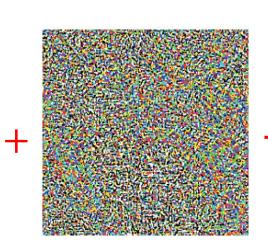
ARTIFICIAL-INTELLIGENCE Researchers are trying to fix The flaws of neural networks.

DSAI Summit 2023,

Monash University, Faculty of IT



10 OCTOBER 2019 | VOL 574 | NATURE | 163

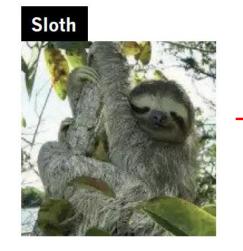


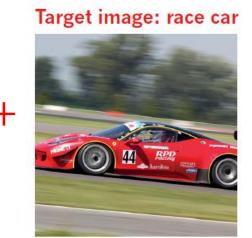
 ϵ - small perturbation

Adversarial Attack and Robustness

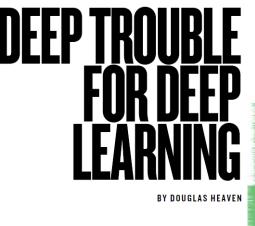
- Deliberately exploit loopholes in the Al system to disrupt its functions
- Deep learning: turns out, it's very easy to hack DNNs!

Targeted Attack





Heaven D., Deep Trouble for Deep Learning, Vol 574 Nature, 2019.

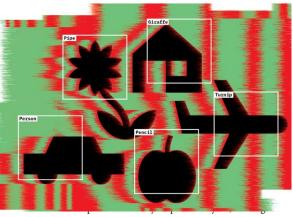


Race car

ARTIFICIAL-INTELLIGENCE Researchers are trying to fix the flaws of neural networks.

DSAI Summit 2023,

Monash University, Faculty of IT



10 OCTOBER 2019 | VOL 574 | NATURE | 163

Adversarial Attack and Robustness

DSAI Summit 2023, 9 Monash University, Faculty of IT

"THERE ARE SO MANY DIFFERENT WAYS THAT YOU CAN ATTACK A SYSTEM."

Type of Attacks

- Adversarial attacks
- Backdoor attacks
- Poison attacks
- Inference attacks

Domain Attacked

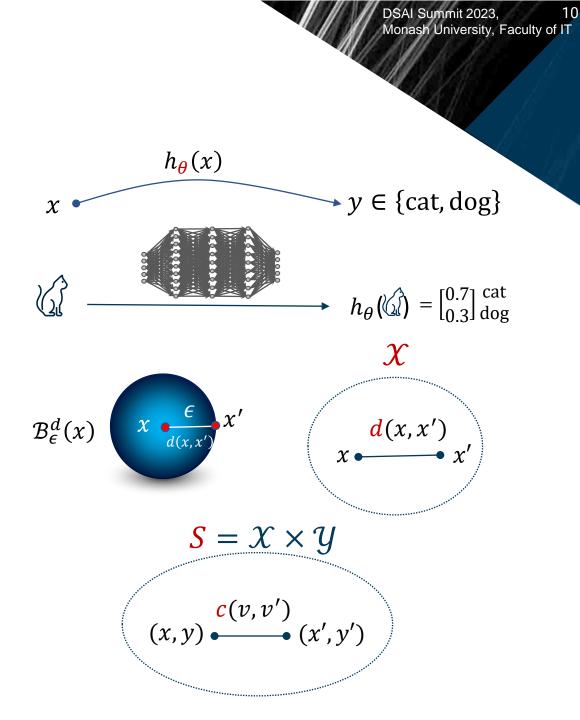
- Visual: images, videos
- Auditory: speech, music
- Text: sentiment,
- Graph

Defence: Adversarial Training, Certified Robustness

Heaven D., Deep Trouble for Deep Learning, Vol 574 Nature, 2019.

Notation

- $\mathbb{I}_{\{\text{condition}\}} = 1$ if condition is true; 0 otherwise \circ E.g. $\mathbb{I}_{\{1=1\}} = 1$, $\mathbb{I}_{\{1=2\}} = 0$
- Supervised learning: $h_{\theta}: \mathcal{X} \to \mathcal{Y}, \theta \in \Omega$
 - Input space $x \in X$, output space $y \in Y$
 - Prediction space:
 - $h_{\theta}(x) \in \Delta^{|\mathcal{Y}|-1}$ (simplex)
 - $h_{\theta}^{j}(x) = j^{\text{th}} \text{ element, } i.e., p(y = j|x)$
 - $\hat{y} = \underset{i}{\operatorname{argmax}} h_{\theta}(x), \ \hat{y} \in \mathcal{Y}$
- ϵ -vicinity ball, $\epsilon > 0$, $\mathcal{B}^d_{\epsilon}(x) = \{x': d(x, x') < \epsilon\}$
 - \circ centred at *x* induced by metric *d* on *X*
- S: a Polish space, endowed with metric c(v, v')
 - \circ c(v, v'): non-negative, symmetric, triangle inequality
 - We usually consider product spaces: $S = X \times Y$ or $S = X \times X \times Y$
 - μ, ν : probability measures, $T: S \rightarrow S$: measurable map
 - o $T_{\#}\mu$: push-forward measure of μ via T



Key concepts

Given (x, y) and a classifier $\hat{y} = h(x)$

- For now, x' is said to be 'similar' to x if $x' \in \mathcal{B}^d_{\epsilon}(x)$
- Untargeted attack: find *adversarial* x' such that:
 o x' is similar to x, but classified differently, i.e., h(x') ≠ y
- Targeted attack: let y* ≠ y, find x' such that:
 x' is similar to x, but classified as y* instead, i.e, h(x') = y*
- Adversarial training:
 - Given training $D = \{(x_i, y_i), i = 1, ..., n\}$, for each x_i find its adversarial x'_i and form $D' = \{(x'_i, y_i)\}$
 - $\circ~$ Use both D~ and D'~ for training
- Defence/adversarial robustness
 - Find h(x) so that h(x) correctly classifies x and its adversarial x' to be in the same class y.

Adversarial Training (AT)

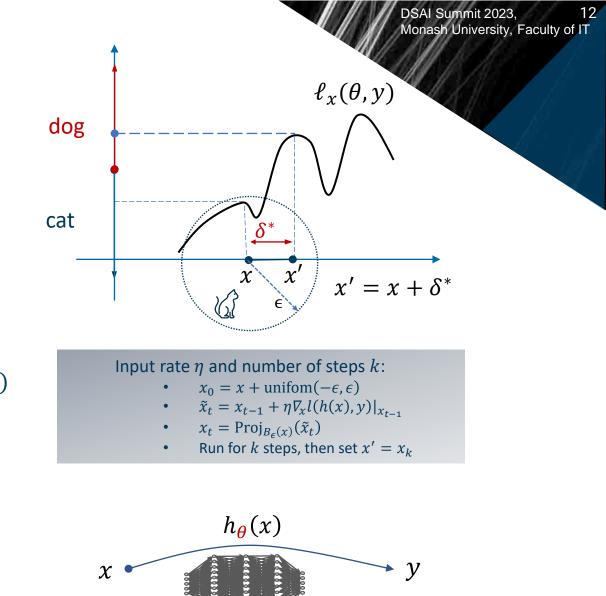
- Projected Gradient Descent (PGD)
 - Find adversarial $x' = x + \delta^*$ where $\Delta_{\epsilon} = \{\delta: \|\delta\|_{\infty} \le \epsilon\}$ and:

 $\delta^* = \operatorname*{argmax}_{\delta \in \Delta_\epsilon} \ell(h_\theta(x+\delta), y)$

- Supervised training: let $(x, y) \sim P_{X \times Y}$,
 - $CE(h_{\theta}(x), y) = CE(h_{\theta}(x), [0, ..., 1, ..., 0]) = -\ln h_{\theta}^{y}(x)$
 - Individual loss: $\ell_{x,y}(\theta) = CE(h_{\theta}(x), y)$
 - Loss objective: $\ell(\theta) = \mathop{\mathbb{E}}_{(x,y)\sim P} [\ell_{x,y}(\theta)]$
- PGD-AT learning loss:
 - Let x' be adversarial sample of x via PGD:

$$\ell_{x,y}^{\text{pgd}}(\theta) = \ell_x(\theta) + \beta \sup_{x'} \ell_{x'}(\theta, y)$$
$$= CE(h_{\theta}(x), y) + \beta \sup_{x' \in \mathcal{B}_{\epsilon}(x)} CE(h_{\theta}(x'), y)$$

*Madry et. al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR, 2019.



Three SOTA AT approaches

- AT-PGD learning objective (Madry, et al,
 AT-TRADES (Zhang et. al, 2019)
 2019):
 - PGD-AT loss:

 $\ell_{x,y}^{\text{pgd}}(\theta) = \text{CE}(h_{\theta}(x), y) + \beta \sup_{x' \in \mathcal{B}_{\epsilon}(x)} \text{CE}(h_{\theta}(x'), y)$

• Learning objective: $\theta^* = \arg\min_{\theta} \mathbb{E}_{\mathbb{P}}[\ell_x^{\text{PGD}}(\theta)]$, i.e,

$$\inf_{\theta} \mathbb{E} \left[CE(h_{\theta}(x), y) + \beta \sup_{x' \in \mathcal{B}_{\epsilon}(x)} CE(h_{\theta}(x'), y) \right]$$

mitigate worst-case

 $\ell_{x,y}^{\text{trades}}(\theta)$ $\inf_{\theta} \mathbb{E}\left[CE(h_{\theta}(x), y) + \beta \sup_{x'} D_{KL}(h_{\theta}(x'), h_{\theta}(x))\right]$ maximise diversity

13

DSAI Summit 2023.

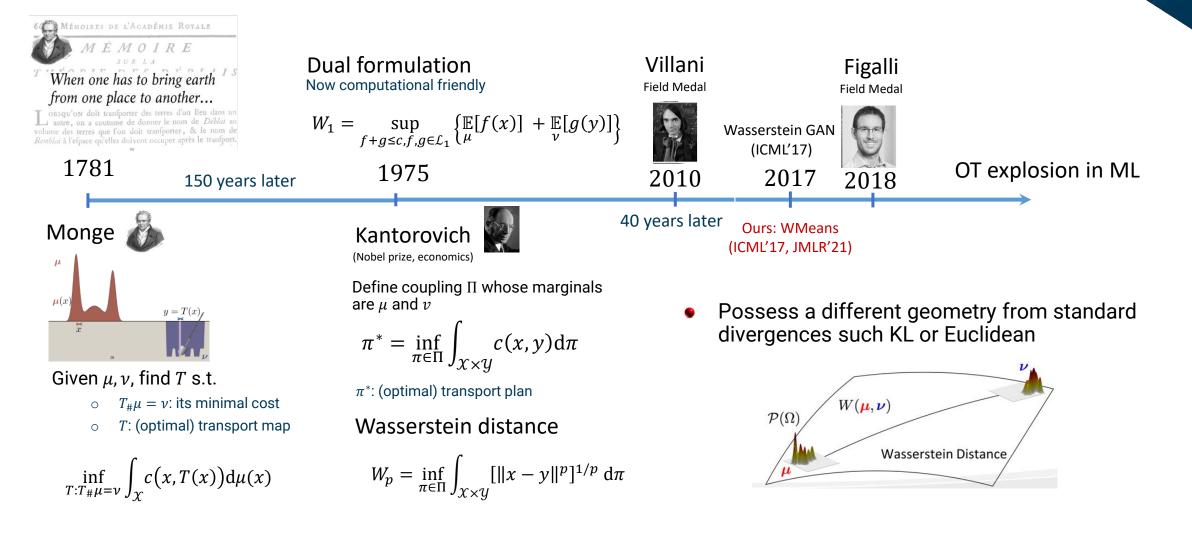
Monash University, Faculty of IT

AT-MART (Wang et al., 2019):
 ○ Define BCE(h_θ(x), y) = -log h^y_θ(x) - log (1 - max h^y_θ(x))
 ○ Extend TRADES to take into account the prediction confidence

$$\ell_{x,y}^{\text{mart}}(\theta)$$

$$\inf_{\theta} \mathbb{E} \left[\text{BCE}(h_{\theta}(x), y) + \beta \left(1 - h_{\theta}^{y}(x)\right) \sup_{x'} D_{KL}(h_{\theta}(x'), h_{\theta}(x)) \right]$$

Wasserstein and Optimal Transport (OT) A (very) brief history



DSAI Summit 2023,

Monash University, Faculty of IT

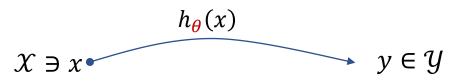
Wasserstein Risk Minimization (WRM)

- Distributional Robustness
 DRO = optimisation + statistics
- General setting:
 - Let $v \sim P$ on metric space S
 - $f(v): S \rightarrow \mathbb{R}$ is a risk/reward function
 - Seek Q on S such that: $\sup_{Q} \mathbb{E} [f(v)]$ $\lim_{Q \to Q: \operatorname{dist}(Q,P) < \epsilon} [f(v)]$
- Key result: if Wasserstein distance is used, then:

 $\sup_{Q:W_{C}(Q,P)<\epsilon} \mathbb{E}[f(v)]$

is equivalent to $\inf_{\lambda \ge 0} \left\{ \lambda \epsilon + \mathop{\mathbb{E}}_{v \sim P} \left[\sup_{v'} \left(f(v') - \lambda c(v, v') \right] \right\}$

- WRM (Sheena et al'18) = DRO + ML
 - Consider a typical supervised setting:



15

Ionash University, Faculty of IT

- Now let $S = \mathcal{X} \times \mathcal{Y}$ and v = (x, y), v' = (x', y') on S
- Define metric: $c(v, v') = d(x, x') + \infty \times \mathbb{I}_{[y \neq y']}$

• And risk:
$$f(v) = \ell_{x,y}(\theta) = \ell(h_{\theta}(x), y)$$

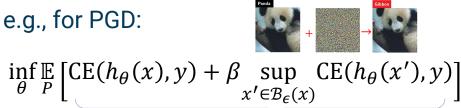
 $\circ~$ Then learning $\theta~$ under DRO becomes (WRM)

 $\inf_{\theta} \sup_{Q:W_c(Q,P) < \epsilon} \mathbb{E} \left[\ell(h_{\theta}(x), y) \right]$

From AT to Distributional AT

16 Nonash University, Faculty of IT

- Recall: standard AT looking for pairwise (x, x') to improve robustness.
 - e.g., for PGD:



 $\ell_{xy}^{\text{pgd}}(\theta)$

DRO/WRM looks for the entire adversarial distribution Q in the vicinity of data distribution *P*, i.e.,

 $\inf_{\theta} \sup_{Q:W(Q,P) \le \epsilon} \mathbb{E} \left[\ell(h_{\theta}(x), y) \right]$

Is there a theoretical tool to provide a connection between them?

• First attempt using WRM for PGD-AT: $\circ S = \mathcal{X} \times \mathcal{Y}, c(v, v') = d(x, x') + \infty \times \mathbb{I}_{[v \neq v']}$ • Let $f(v) = f(x, y) = \ell_{x, y}^{pgd}(\theta)$, WRM becomes:

 $\inf_{\theta} \sup_{Q:W_{c}(Q,P) < \epsilon} \mathbb{E} \left[\ell(h_{\theta}(x), y) \right]$

- Not quite, but almost, by letting $\epsilon \rightarrow 0$.
- And fail to solve for more complex AT methods, such as ℓ_x^{trades} and ℓ_x^{mart}

Our Unified Distribution Robustness (UDR)

Adobe

Bui, et. al, ICLR 2022

Solution sketch:

Tony Bui Dr Trung Le

• Let $S = \mathcal{X} \times \mathcal{X} \times \mathcal{Y}$:

- space of x, space of its adversarial x' and output
- Use p(x, y) = p(y|x)p(x), write $P_{\chi \times \mathcal{Y}} = P_{\chi} \times P_{|\mathcal{X}|}$
- Denote *P*^{*} the distribution over specific configuration (x, x, y) where $x \sim P_{\chi}$ and $y \sim P_{|\chi}$.
- \circ P^{*} is a distribution on S, let seek Q on S such that $W_{c^*}(Q, P^*) < \epsilon.$
 - Let $v = (x, x, y) \sim P^*$ and $v' = (x', x'', y') \sim Q$, metric $c^*(\cdot)$ deliberately designed:
 - $c^*(v,v') = d(x,x') + \infty \times d(x,x'') + \infty \times \mathbb{I}_{[v=v']}$
 - $c^*(v, v') < \infty$, then x'' = x, y' = y and $x' \to x$
- Define a unified risk function $g_{\theta}(v')$ for UDR-PGD, **URD-TRADES and URD-MART respectively:**

 $= \begin{cases} \operatorname{CE}(h_{\theta}(x^{\prime\prime}), y^{\prime}) + \beta \bigcup_{\substack{y' \in \mathcal{B}_{e}(x)}} \operatorname{CE}(h_{\theta}(x^{\prime}), y^{\prime}) \\ \operatorname{CE}(h_{\theta}(x^{\prime\prime}), y^{\prime}) + \beta \operatorname{D}_{KL}(h_{\theta}(x^{\prime}), h_{\theta}(x^{\prime\prime})) \\ \operatorname{BCE}(h_{\theta}(x^{\prime\prime}), y^{\prime}) + \beta (1 - h_{\theta}^{y}(x^{\prime\prime})) \operatorname{D}_{KL}(h_{\theta}(x^{\prime}), h_{\theta}(x^{\prime\prime})) \end{cases}$

• Key results: • The primal DRO $\inf_{\theta} \sup_{Q:W_c(Q,P^*) < \epsilon} \mathbb{E}[g_{\theta}(v')]$ becomes $\inf_{\theta,\lambda\geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{\substack{v \sim P^*}} \left[\sup_{v'} \left(g_{\theta}(v') - \lambda c^*(v,v') \right) \right\} \right\}$ • With specific $c^*(v, v')$, this is the same as $\inf_{\theta,\lambda\geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{\substack{x\sim P}} \left[\sup_{x'\in\mathcal{X}} \left(g_{\theta}(x',x,y) - \lambda d(x,x') \right] \right\}$

DSAI Summit 2023.

Monash University, Faculty of IT

• Theorem: let $d^*(x, x') = d(x, x')$ if $x' \in \mathcal{B}^d_{\epsilon}(x)$ and ∞ otherwise, then:

 $\inf_{\theta,\lambda\geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{x\sim P} \left| \sup_{x' \in \mathcal{Y}} \left(g_{\theta}(x', x, y) - \lambda d^{*}(x, x') \right) \right\}$ is equivalent to $\inf_{\theta} \mathbb{E} \left[\sup_{x' \in \mathcal{B}_{\epsilon}(x)} g_{\theta}(x', x, y) \right]$

• Claims:

- AT-method are special cases of UDR-method
- Richer expressive capacity
- Substantially different from WRM (Shina etal '18, Blanchet & Murphy '19)

Learning with UDR Bui, et. al, ICLR 2022

- Note $d^*(x, x')$ is non-differentiable outside the ball $\mathcal{B}_{\epsilon}(x)$, define a smoothed version $\hat{d}(x, x')$: $d(x, x')\mathbb{I}_{[d(x, x') < \epsilon]} + \left(\epsilon + \frac{d(x, x') - \epsilon}{\tau}\right)\mathbb{I}_{[d(x, x') \ge \epsilon]}$
- Final optimisation form: $\inf_{\substack{\theta,\lambda \ge 0}} \left\{ \lambda \epsilon + \mathop{\mathbb{E}}_{x \sim P} \left[\sup_{x' \in \mathcal{X}} \left(g_{\theta}(x', x, y) - \lambda \hat{d}(x, x') \right] \right\}$ 2
 3
 1

1. For each (x_i, y_i) learn adversarial sample: $x_i^{adv} = \underset{x'}{\operatorname{argmax}} \{g_{\theta}(x', x_i, y_i) - \lambda \hat{d}(x_i, x')\}$

DSAI Summit 2023,

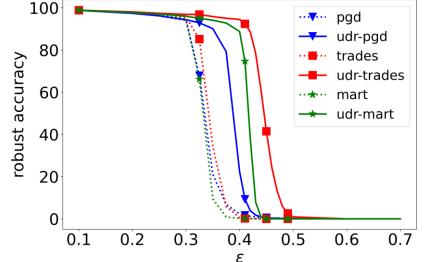
Monash University, Faculty of IT

18

- 2. Update parameter λ (take derivative, set to 0): $\lambda_l = \lambda_{l-1} - \eta_{\lambda} \left(\epsilon - \frac{1}{N} \sum_i \hat{d}(x_i^{adv}, x_i) \right)$
- 3. Update model parameter θ : $\theta_l = \theta_{l-1} - \frac{\eta_{\theta}}{N} \sum_{i}^{N} \nabla g_{\theta} \left(x_i^{\text{adv}}, x_i, y_i \right) \Big|_{\theta_{l-1}}$

Our Unified Distribution Robustness (UDR) Bui, et. al, ICLR 2022

- Key experimental results
 - $\circ~$ UDR-methods outperform in Whitebox Attack with fixed ϵ
 - Methods can extend beyond PGD, TRADES, MART, but also new methods: Auto-Attack, AWP, C&W, and so on.
 - \circ Consistent performance against various attack strength (e.g., varying ϵ)



	MNIST				CIFAR10				CIFAR100			
PGD-AT UDR-PGD	Nat 99.4 99.5	PGD 94.0 94.3	AA 88.9 90.0	B&B 91.3 91.4	Nat 86.4 86.4	PGD 46.0 48.9	AA 42.5 44.8	B&B 44.2 46.0	Nat 72.4 73.5	PGD 41.7 45.1	AA 39.3 41.9	B&B 39.6 42.3
TRADES	99.4	95.1	90.9	92.2	80.8	51.9	49.1	50.2	68.1	49.7	46.7	47.2
UDR-TRADES	99.4	96.9	92.2	95.2	84.4	53.6	49.9	51.0	69.6	49.9	47.8	48.7
MART	99.3	94.7	90.6	92.9	81.9	53.3	48.2	49.3	68.1	49.8	44.8	45.4
UDR-MART	99.3	96.0	92.3	94.4	80.1	54.1	49.1	50.4	67.5	52.0	48.5	48.6

See our poster for more details and results

Code: https://github.com/tuananhbui89/Unified-Distributional-Robustness

DSAI Summit 2023, 19 Monash University, Faculty of IT

Want to know more ?

Robust/Trustworthy ML

- Anh Bui et al., Generating Adversarial Examples with Tak Oriented Multi-Objective Optimization, TMLR, 2023.
- Anh Bui et al., A Unified Wasserstein Distributional Robustness Framework for Adversarial Training, ICLR, 2022.
- Trung Le et al., A Global Defense Approach via Adversaria Attack and Defense Risk Guaranteed Bounds, AISTATA, 2
- Thanh Nguyen-Duc et al., Particle-based Adversarial Loca Distribution Regularization, AISTATS, 2022.
- Anh Bui et al., Improving Ensemble Robustness by Collaboratively Promoting and Demoting Adversarial Robustness, AAAI, 2021.
- Anh Bui et al., Improving Adversarial Robustness by Enforcing Local and Global Compactness, ECCV, 2020.
- EMNLP'20, AISTATS'20, ...

THANK YOU

dinh.phung@monash.edu

Acknowledgment:

Dr Paul Montague, Dr Tamas Abraham (DST) Next Technology Generation Scheme (2018-) Australia Research Council Discovery Project (2023-)

Selected work on Optimal Transport for ML:

Tutorial on "Optimal Transport", ACML 2021

Two survey papers: IJCAI'21 (for Generative AI), IJCAI'21 (for topic models)

ICML'23, AIS TAT'23, ICASSP'23

NeuRIPS'22, ICML'22, ICLR'22, UAI'22, AISTATS'22

- JMLR'21, NeurIP (21, ICCV'21, ICML'21, IJCAI'21, UAI'21, ICLR'21, AAAI'21
- NeurIPS'20, , ICML'2, ECCV'20,
- ICLR'19, IJCAI'19, ICM. '17

Appendix

