Small Change Matters Towards Robust Deep Learning with Optimal Transport

Dinh Phung dinh.phung@monash.edu A@M Colloquium, Melbourne University, July 2023

Robust and Trustworthy Al

- Al impacts us in a profound way
- Rapidly becomes more autonomous with fully automated critical decisions

Problem: a magnitude of order more serious than, probably, the rate of AI growth if things go wrong!

1. Tesla Autopilot kills

Tesla Autopilot Crashes: With at Least a Dozen Dead, 'Who's at Fault, Man or Machine?'

After a Tesla car reportedly on autopilot recently killed two people in China and many other drivers report self-driving system malfunctions, the automaker is facing increased scrutiny over its technology

- Al impacts us in a profound way
- Rapidly becomes more autonomous with fully automated critical decisions

Problem: a magnitude of order more serious than, probably, the rate of AI growth if things go wrong!

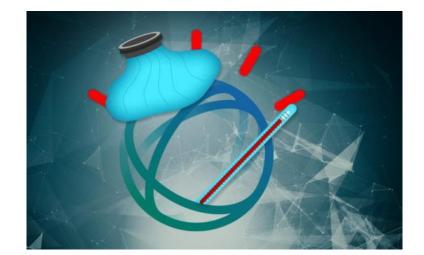
- **Tesla Autopilot kills**
- **IBM Watson recommends wrong cancer treatment**

EXCLUSIVE

STAT+

IBM's Watson supercomputer recommended 'unsafe and incorrect' cancer treatments, internal documents show

By Casey Ross J and Ike Swetlitz J July 25, 2018



Robust and Trustworthy Al

- Al impacts us in a profound way
- Rapidly becomes more autonomous with fully automated critical decisions

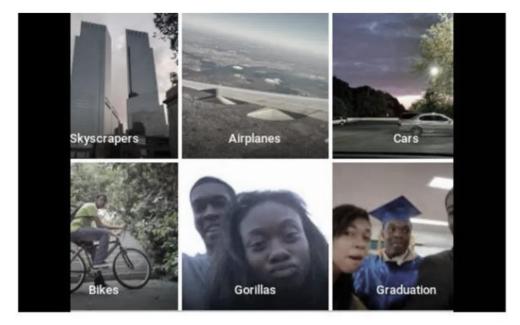
Problem: a magnitude of order more serious than, probably, the rate of AI growth if things go wrong!

- **Tesla Autopilot kills**
- **IBM Watson recommends wrong cancer treatment**
- **LLM-based Chatbot [Elisa] encourages suicide**

WEIRD BUT TRUE

Married father commits suicide after encouragement by AI chatbot: widow

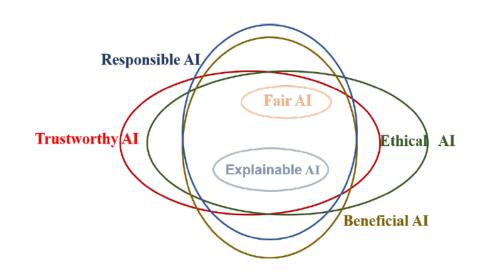
Amazon's Al Recruitment Tool Bias, Microsoft Chatbot Tay Offensive Tweets, Apple Card Gender Bias, Uber's Greyball program, **Google Photo Misclassification**



- 1. Tesla Autopilot kills
- 2. IBM Watson recommends wrong cancer treatment
- 3. LLM-based Chatbot [Elisa] encourages suicide

Robust vs Trustworthy Al

- Robust AI: consistent performance
 - missing/incomplete data, out-of-distribution shift, noisy, unreliable scenarios, day/light, ...
 - under deliberate <u>adversarial</u> attacks to disrupt its functioning.
- Trustworthy AI: robustness + transparent, accountable, bias-free
 - bring confidence and trust to AI adoption to everyday activities.
- Vital to (Human + AI) endeavour!



Other related concepts

Liu et al., Trustworthy AI: A Computational Perspective, ACM Computing Survey, 2021.

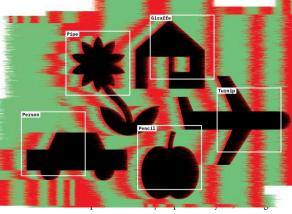
- Deliberately exploit loopholes in the Al system to disrupt its functions
- Deep learning: turns out, it's very easy to hack DNNs!

Heaven D., Deep Trouble for Deep Learning, Vol 574 Nature, 2019.

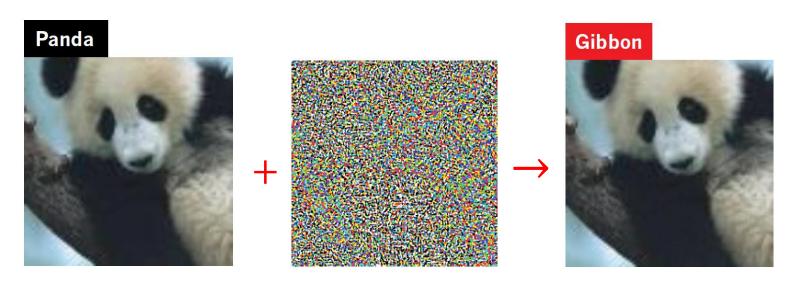
BY DOUGLAS HEAVEN

DEEP TROUBLE FOR DEEP LEARNING

ARTIFICIAL-INTELLIGENCE RESEARCHERS ARE TRYING TO FIX THE FLAWS OF NEURAL NETWORKS.



10 OCTOBER 2019 | VOL 574 | NATURE | 16



 ϵ - small perturbation

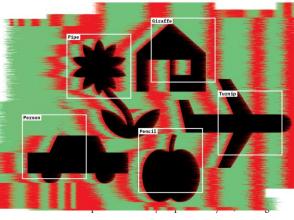
Adversarial Attack and Robustness

- Deliberately exploit loopholes in the Al system to disrupt its functions
- Deep learning: turns out, it's very easy to hack DNNs!

Heaven D., Deep Trouble for Deep Learning, Vol 574 Nature, 2019.

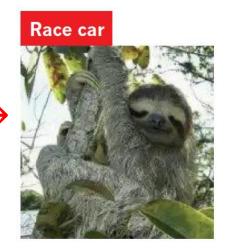
DEEP TROUBLE FOR DEEP LEARNING

ARTIFICIAL-INTELLIGENCE RESEARCHERS ARE TRYING TO FIX THE FLAWS OF NEURAL NETWORKS.



BY DOUGLAS HEAVEN

Targeted Attack



10 OCTOBER 2019 | VOL 574 | NATURE | 16

Whitebox, blackbox, nobox

Whitebox

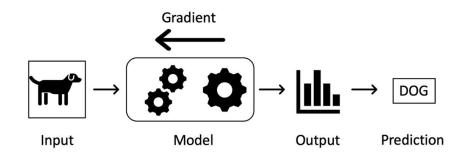
Blackbox

Nobox

Has access to all model details including defending strategy

Do not have access to internal model

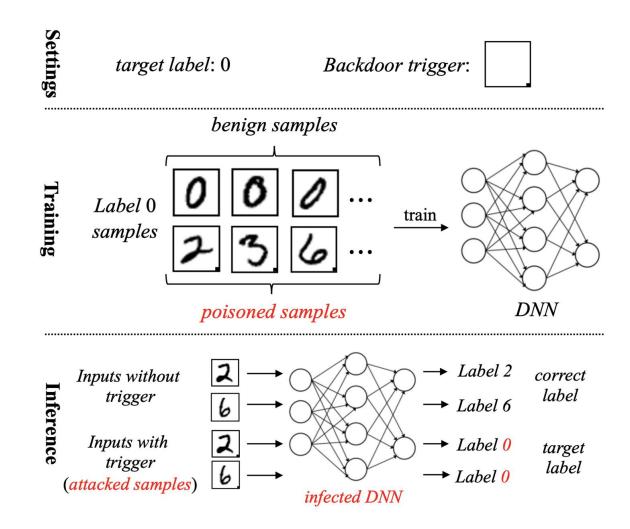
Access to none



Attack setting	Input	Architecture	Output	Gradient
White-box	/	✓	✓	✓
Black-box	✓	0	/	0
No-box	0	0	0	0

Training time attacks

- Training time attacks
 - Backdoor attack: Injecting backdoor into a target model
 - Poison attack: corrupting a target model



Adversarial Attacks

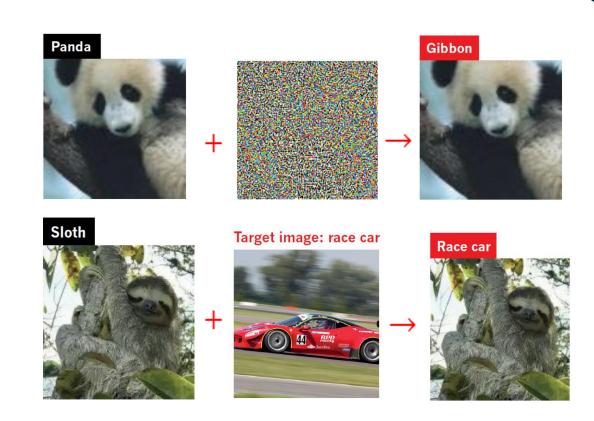
Test time attacks

Training time attacks

- Backdoor attack: Injecting backdoor into a target model
- Poison attack: corrupting a target model

Test time attacks:

- Evasion attack: manipulating model's prediction (i.e., adversarial examples)
- Model extraction: stealing model functionality
- Privacy attack: extracting sensitive training data



Adversarial Attack and Defense

"THERE ARE SO **WAYS THAT YOU** CAN ATTACK A SYSTEM."

Type of Attacks

- Adversarial examples
- Backdoor attacks
- Poison attacks
- Privacy attacks

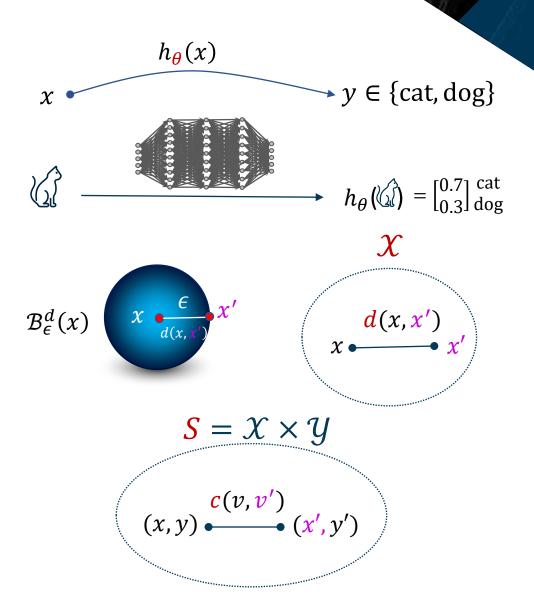
Domain Attacked

- Visual: images, videos
- Auditory: speech, music
- Text: sentiment,
- Graph

Defense: Adversarial Training, Randomized Smoothing, Adversarial Purifying, and many more.

Notation

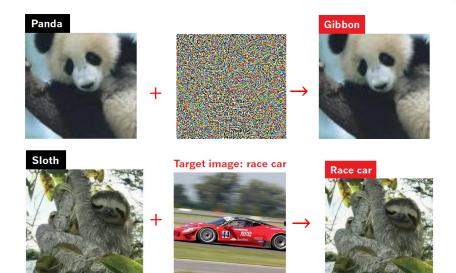
- $\mathbb{I}_{\{\text{condition}\}} = 1$ if condition is true; 0 otherwise
 - $\quad \circ \quad \text{ E.g. } \mathbb{I}_{\{1=1\}}=1 \text{, } \mathbb{I}_{\{1=2\}}=0$
- Supervised learning: $h_{\theta}: \mathcal{X} \to \mathcal{Y}, \theta \in \Omega$
 - o Input space $x \in \mathcal{X}$, output space $y \in \mathcal{Y}$
 - o Prediction space:
 - $h_{\theta}(x) \in \Delta^{|\mathcal{Y}|-1}$ (simplex)
 - $h_{\theta}^{j}(x) = j^{\text{th}}$ element, i. e., p(y = j|x)
 - $\hat{y} = \underset{j}{\operatorname{argmax}} h_{\theta}(x), \ \hat{y} \in \mathcal{Y}$
- ϵ -vicinity ball, $\epsilon > 0$, $\mathcal{B}^d_{\epsilon}(x) = \{x' : d(x, x') < \epsilon\}$
 - o centred at x induced by metric d on X
- S: a Polish space, endowed with metric c(v, v')
 - o c(v, v'): non-negative, symmetric, triangle inequality
 - We usually consider product spaces: $S = \mathcal{X} \times \mathcal{Y}$ or $S = \mathcal{X} \times \mathcal{X} \times \mathcal{Y}$
 - \circ μ, ν : probability measures, $T: S \to S$: measurable map
 - o $T_{\#}\mu$: push-forward measure of μ via T



Key concepts

Given (x, y) and a classifier $\hat{y} = h(x)$

- For now, x' is said to be 'similar' to x if $x' \in \mathcal{B}^d_{\epsilon}(x)$
- Untargeted attack: find adversarial x' such that:
 - o x' is similar to x, but classified differently, i.e., $h(x') \neq y$
- Targeted attack: let $y^* \neq y$, find x' such that:
 - o x' is similar to x, but classified as y^* instead, i.e, $h(x') = y^*$
- Adversarial training:
 - O Given training $D = \{(x_i, y_i), i = 1, ..., n\}$, for each x_i find its adversarial x_i' and form $D' = \{(x_i', y_i)\}$
 - \circ Use both D and D' for training
- Defence/adversarial robustness
 - Find h(x) so that h(x) correctly classifies x and its adversarial x' to be in the same class y.
- Note: adversarial samples ≠ adversarial attacks
 - The later has a broader context as in 'adversary'



Adversarial Training (AT)

Projected Gradient Descent (PGD)

ο Find adversarial $x' = x + \delta^*$ where $\Delta_{\epsilon} = \{\delta: \|\delta\|_{\infty} \le \epsilon\}$ and:

$$\delta^* = \operatorname*{argmax}_{\delta \in \Delta_{\epsilon}} \ell(h_{\theta}(x + \delta), y)$$

• Supervised training: let $(x, y) \sim P_{x \times y}$,

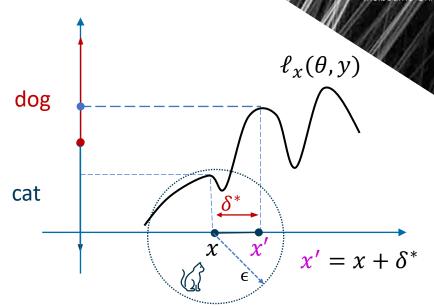
$$CE(h_{\theta}(x), y) = CE(h_{\theta}(x), [0, ..., 1, ..., 0]) = -\log h_{\theta}^{y}(x)$$

- o Individual loss: $\ell_{x,y}(\theta) = \ell_x(\theta,y) = CE(h_{\theta}(x),y)$
- o Loss objective: $\ell(\theta) = \mathbb{E}_{(x,y)\sim P}[\ell_{x,y}(\theta)]$

AT-PGD learning loss:

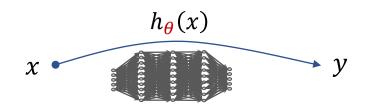
 \circ Let x' be adversarial sample of x via PGD:

$$\ell_{x,y}^{\text{pgd}}(\theta) = \ell_{x,y}(\theta) + \beta \sup_{x'} \ell_{x',y}(\theta)$$
$$= \text{CE}(h_{\theta}(x), y) + \beta \sup_{x' \in \mathcal{B}_{\epsilon}(x)} \text{CE}(h_{\theta}(x'), y)$$



Input rate η and number of steps k:

- $x_0 = x + \operatorname{unifom}(-\epsilon, \epsilon)$
- $\widetilde{x}_t = x_{t-1} + \eta \nabla_x \ell(h(x), y)|_{x_{t-1}}$
- $x_t = \operatorname{Proj}_{B_{\epsilon}(x)}(\tilde{x}_t)$
- Run for k steps, then set $x' = x_k$



Three SOTA AT approaches

- AT-PGD learning objective (Madry, et al, AT-TRADES (Zhang et. al, 2019) 2019):
 - **PGD-AT loss:**

$$\ell_{x,y}^{\text{pgd}}(\theta) = \text{CE}(h_{\theta}(x), y) + \beta \sup_{x' \in \mathcal{B}_{\epsilon}(x)} \text{CE}(h_{\theta}(x'), y)$$

o Learning objective: $\theta^* = \arg\min_{\alpha} \mathbb{E}_{\mathbb{P}}[\ell_{x,y}^{PGD}(\theta)]$, i.e,

$$\inf_{\theta} \mathbb{E} \left[CE(h_{\theta}(x), y) + \beta \sup_{x' \in \mathcal{B}_{\epsilon}(x)} CE(h_{\theta}(x'), y) \right]$$
mitigate worst-case

$$\ell_{x,y}^{\text{trades}}(\theta)$$

$$\inf_{\theta} \mathbb{E}\left[CE(h_{\theta}(x), y) + \beta \sup_{x'} D_{KL}(h_{\theta}(x'), h_{\theta}(x)) \right]$$
maximise diversity

AT-MART (Wang et al., 2019):

Extend TRADES to take into account the prediction confidence

$$\ell_{x,y}^{\text{mart}}(\theta)$$

$$\inf_{\theta} \mathbb{E}\left[\text{BCE}(h_{\theta}(x), y) + \beta(1 - h_{\theta}^{y}(x)) \sup_{x'} D_{KL}(h_{\theta}(x'), h_{\theta}(x))\right]$$

18 9:14 AM

Wasserstein and Optimal Transport (OT)

A (very) brief history

1781

150 years later

Dual formulation

Now computational friendly

$$W_1 = \sup_{f+g \le c, f, g \in \mathcal{L}_1} \left\{ \mathbb{E}[f(x)] + \mathbb{E}[g(y)] \right\}$$

1975

40 years later

V. Villani Field Medal

2010

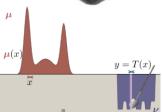
A. Figalli

Field Medal

(ICML'17, JMLR'21) 2013 2017

OT4ML took off

G. Monge



Given μ , ν , find T s.t.

- $T_{\#}\mu = \nu$: its minimal cost
- T: (optimal) transport map

$$\inf_{T:T_{\#}\mu=\nu}\int_{\mathcal{X}}c(x,T(x))\mathrm{d}\mu(x)$$

L. Kantorovich

(Nobel prize, economics)

Define coupling Π whose marginals are μ and ν

$$\pi^* = \inf_{\pi \in \Pi} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi$$

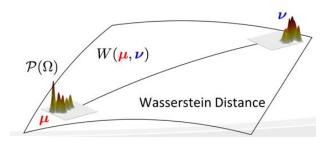
 π^* : (optimal) transport plan

Wasserstein distance

$$W_p = \inf_{\pi \in \Pi} \int_{\mathcal{X} \times \mathcal{Y}} [\|x - y\|^p]^{1/p} d\pi$$

Sinkhorn Wasserstein GAN (NeurIPS'13) (ICML'17)

Possess a different geometry from standard divergences such KL or Euclidean



Wasserstein Risk Minimization (WRM)

- Distributional Robustness (Blanchet et al' 19) DRO = optimisation + stats
- General setting:
 - Let $v \sim P$ on metric space S
 - o $f(v): S \to \mathbb{R}$ is a risk/reward function
 - Seek Q on S such that: $\sup_{Q} \mathbb{E} [f(v)]$ $\sup_{Q: \text{dist}(Q,P) < \epsilon}$
- **Key result**: if Wasserstein distance is used, then:

$$\sup_{Q:W_C(Q,P)<\epsilon} \mathbb{E}[f(v)]$$

is equivalent to

$$\inf_{\lambda \geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{v \sim P} \left[\sup_{v'} \left(f(v') - \lambda c(v, v') \right) \right] \right\}$$

- WRM (Sinha et al'18) = DRO + ML
 - Consider a typical supervised setting:

$$\chi \ni x \quad b_{\theta}(x) \quad y \in \mathcal{Y}$$

- Now let $S = \mathcal{X} \times \mathcal{Y}$ and v = (x, y), v' = (x', y') on S
- o Define metric: $c(v, v') = d(x, x') + \infty \times \mathbb{I}_{[y \neq y']}$
- o And risk: $f(v) = \ell_{x,y}(\theta) = \ell(h_{\theta}(x), y)$
- \circ Then learning θ under DRO becomes (WRM)

$$\inf_{\theta} \sup_{Q:W_{c}(Q,P)<\epsilon} \mathbb{E}\left[\ell(h_{\theta}(x),y)\right]$$

From AT to Distributional AT

• Recall: standard AT looking for pairwise (x, x') to improve robustness.

• e.g., for PGD:
$$\inf_{\theta} \mathbb{E} \left[CE(h_{\theta}(x), y) + \beta \sup_{x' \in \mathcal{B}_{\epsilon}(x)} CE(h_{\theta}(x'), y) \right]$$
$$\ell_{x,y}^{pgd}(\theta)$$

 DRO/WRM looks for the entire adversarial distribution Q in the vicinity of data distribution P, i.e.,

$$\inf_{\theta} \sup_{Q:W(Q,P)\leq \epsilon} \mathbb{E}\left[\ell(h_{\theta}(x),y)\right]$$

Is there a theoretical tool to provide a connection between them?

First attempt using WRM for AT-PGD:

o
$$S = \mathcal{X} \times \mathcal{Y}, c(v, v') = d(x, x') + \infty \times \mathbb{I}_{[y \neq y']}$$

o Let $f(v) = f(x, y) = \ell_{x, y}^{\text{pgd}}(\theta)$, WRM becomes:

$$\inf_{\theta} \sup_{Q:W_c(Q,P)<\epsilon} \mathbb{E}\left[\ell(h_{\theta}(x),y)\right]$$

- Not quite, but almost, by letting $\epsilon \to 0$.
- And fail to solve for more complex AT methods, such as ℓ_x^{trades} and ℓ_x^{mart}

Our Unified Distribution Robustness (UDR)

Bui, et. al, ICLR 2022

Tony Bui Dr Trung Le

- Solution sketch:
 - $\circ \ \mathsf{Let} \, \mathcal{S} = \mathcal{X} \times \mathcal{X} \times \mathcal{Y} \colon$
 - space of x, space of its adversarial x' and output
 - Use p(x,y) = p(y|x)p(x), write $P_{\chi \times y} = P_{\chi} \times P_{|\chi}$
 - O Denote P^* the distribution over specific configuration (x, x, y) where $x \sim P_X$ and $y \sim P_{.|X}$.
 - o P^* is a distribution on S, let seek Q on S such that $W_{c^*}(Q, P^*) < \epsilon$.
 - Let $v = (x, x, y) \sim P^*$ and $v' = (x', x'', y') \sim Q$, metric $c^*(\cdot)$ deliberately designed:
 - $c^*(v,v') = d(x,x') + \infty \times d(x,x'') + \infty \times \mathbb{I}_{[y=y']}$
 - $c^*(v, v') < \infty$, then x'' = x, y' = y and $x' \to x$
 - o Define a unified risk function $g_{\theta}(v')$ for UDR-PGD, URD-TRADES and URD-MART respectively:

$$= \begin{cases} \text{CE}(h_{\theta}(x''), y') + \beta | \text{Sup} | \text{CE}(h_{\theta}(x'), y') \\ \text{CE}(h_{\theta}(x''), y') + \beta D_{KL}(h_{\theta}(x'), h_{\theta}(x'')) \\ \text{BCE}(h_{\theta}(x''), y') + \beta (1 - h_{\theta}^{y}(x'')) D_{KL}(h_{\theta}(x'), h_{\theta}(x'')) \end{cases}$$

- Key results:
 - \circ The primal DRO $\inf_{\theta} \sup_{Q:W_c(Q,P^*)<\epsilon} \mathbb{E}[g_{\theta}(v')]$ becomes

$$\inf_{\theta,\lambda\geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{v \sim P^*} \left[\sup_{v'} \left(g_{\theta}(v') - \lambda c^*(v, v') \right) \right] \right\}$$

• With specific $c^*(v, v')$, this is the same as

$$\inf_{\theta,\lambda\geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{x \sim P} \left[\sup_{x' \in \mathcal{X}} \left(g_{\theta}(x', x, y) - \lambda d(x, x') \right) \right] \right\}$$

o Theorem: let $d^*(x, x') = d(x, x')$ if $x' \in \mathcal{B}^d_{\epsilon}(x)$ and ∞ otherwise, then:

$$\inf_{\theta,\lambda\geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{x \sim P} \left[\sup_{x' \in \mathcal{X}} \left(g_{\theta}(x', x, y) - \lambda d^*(x, x') \right) \right] \right\}$$

is equivalent to pointwise objective:

$$\inf_{\theta} \mathbb{E} \left[\sup_{\mathbf{x'} \in \mathcal{B}_{\epsilon}(\mathbf{x})} g_{\theta}(\mathbf{x'}, \mathbf{x}, \mathbf{y}) \right]$$

- Claims:
 - AT-method are special cases of UDR-method
 - Richer expressive capacity
 - Substantially different from WRM (Shina etal '18, Blanchet & Murphy '19)

Learning with UDR

Bui, et. al, ICLR 2022

• Note $d^*(x, x')$ is non-differentiable outside the ball $\mathcal{B}_{\epsilon}(x)$, define a smoothed version $\hat{d}(x, x')$:

$$d(x, \mathbf{x'}) \mathbb{I}_{[d(x, \mathbf{x'}) < \epsilon]} + \left(\epsilon + \frac{d(x, \mathbf{x'}) - \epsilon}{\tau}\right) \mathbb{I}_{[d(x, \mathbf{x'}) \ge \epsilon]}$$

Final optimisation form:

$$\inf_{\theta,\lambda\geq 0} \left\{ \lambda \epsilon + \mathbb{E}_{x\sim P} \left[\sup_{x'\in \mathcal{X}} \left(g_{\theta}(x',x,y) - \lambda \hat{d}(x,x') \right) \right] \right\}$$

2

3

1

Algorithm - UDR

1. For each (x_i, y_i) learn adversarial sample:

$$\mathbf{x}_{i}^{\text{adv}} = \underset{x'}{\operatorname{argmax}} \left\{ g_{\theta}(x', x_{i}, y_{i}) - \lambda \hat{d}(x_{i}, x') \right\}$$

2. Update parameter λ (take derivative, set to 0):

$$\lambda_l = \lambda_{l-1} - \eta_{\lambda} \left(\epsilon - \frac{1}{N} \sum_i \hat{d}(\mathbf{x}_i^{\text{adv}}, \mathbf{x}_i) \right)$$

3. Update model parameter θ :

$$\theta_{l} = \theta_{l-1} - \frac{\eta_{\theta}}{N} \sum_{i}^{N} \nabla g_{\theta} \left(\mathbf{x}_{i}^{\text{adv}}, \mathbf{x}_{i}, \mathbf{y}_{i} \right) \Big|_{\theta_{l-1}}$$

Input rate η and number of steps k:

•
$$x_0 = x + \operatorname{unifom}(-\epsilon, \epsilon)$$

PGD •
$$\tilde{x}_t = x_{t-1} + \eta \nabla_x \ell(h(x), y)|_{x_{t-1}}$$

•
$$x_t = \operatorname{Proj}_{B_{\epsilon}(x)}(\tilde{x}_t)$$

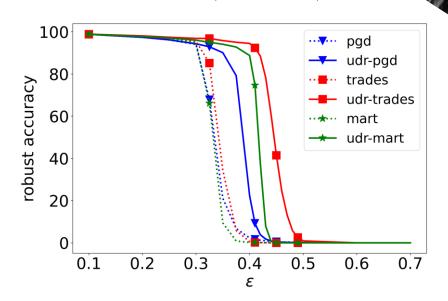
• Run for k steps, then set $x' = x_k$

Our Unified Distribution Robustness (UDR)

Bui, et. al, ICLR 2022

Key experimental results

- \circ UDR-methods outperform in Whitebox Attack with fixed ϵ
- Methods can extend beyond PGD, TRADES, MART, but also new methods, e.g., Auto-Attack and so on.
- Consistent performance against various attack strength (e.g., varying ϵ)



	MNIST				CIFAR10				CIFAR100			
PGD-AT UDR-PGD	Nat 99.4 99.5	PGD 94.0 94.3	AA 88.9 90.0	B&B 91.3 91.4	Nat 86.4 86.4	PGD 46.0 48.9	AA 42.5 44.8	B&B 44.2 46.0	Nat 72.4 73.5	PGD 41.7 45.1	AA 39.3 41.9	B&B 39.6 42.3
TRADES UDR-TRADES	99.4 99.4	95.1 96.9	90.9 92.2	92.2 95.2	80.8 84.4	51.9 53.6	49.1 49.9	50.2 51.0	68.1 69.6	49.7 49.9	46.7 47.8	47.2 48.7
MART UDR-MART	99.3 99.3	94.7 96.0	90.6 92.3	92.9 94.4	81.9 80.1	53.3 54.1	48.2 49.1	49.3 50.4	68.1 67.5	49.8 52.0	44.8 48.5	45.4 48.6

See our poster for more details and results

Code: https://github.com/tuananhbui89/Unified-Distributional-Robustness

Some concluding thoughts

- There is a surge of interests from since Goodfellow et al.' ICLR'15
 - Most interesting aspect: expose the 'mysterious' mathematical behaviours in very complex functions in high-dimensional spaces.
 - Consequences: fragility of modern DNNs
 - O What caused this? –not really know!
 - Consequence of regularisation, models to be too linear in the last layer, so easy to manipulate dot product in high-dimensional space to alter production (Goodfellow ICLR'15)
 - Images have predictive features which are invisible to human (Ilyas. NeurIPS'19); Gaussian artifact (Gilmer, ICML'19), Violation of data manifold hypothesis (CVPR'19)
- Not so good news: probably 70 75% at best for ImageNet
- But some good news: effective 'tools' to understand DL models
- What's next?:
 - Trustworthy ML has a broader context and will be truly important !!!
 - Generative AI is on the rise, so what does it mean to have Trustworthy GenAI?

Want to know more?

THANK YOU

dinh.phung@monash.edu

Acknowledgment:

Dr Paul Montague, Dr Tamas Abraham (DST)
Next Technology Generation Scheme (2018-)
Australia Research Council Discovery Project (2023-)

Robust/Trustworthy ML/

- Anh Bui et al., Generating Adversarial Examples with Talk Oriented Multi-Objective Optimization, TMLR, 2023.
- Anh Bui et al., A Unified Wasserstein Distributional Robustness Framework for Adversarial Training, ICLR, 2022.
- Trung Le et al., A Global Defense Approach via Adversaria Attack and Defense Risk Guaranteed Bounds, AISTATA, 7022
- Thanh Nguyen-Duc et al., Particle-based Adversarial Local Distribution Regularization, AISTATS, 2022.
- Anh Bui et al., Improving Ensemble Robustness by Collaboratively Promoting and Demoting Adversarial Robustness, AAAI, 2021.
- Anh Bui et al., Improving Adversarial Robustness by Enforcing Local and Global Compactness, ECCV, 2020.
- o EMNLP'20, AISTATS'20, ...

Selected work on Optimal Transport for ML:

Tutorial on "Optimal Transport", ACML 2021

Two survey papers: IJCAI'21 (for Generative AI), IJCAI'21 (for topic models)

- ICML'23, Als TAT'23, ICASSP'23
- NeuRIPS'22, ICML'22, ICLR'22, UAI'22, AISTATS'22
- JMLR'21, NeurIP (21, ICCV'21, ICML'21, IJCAI'21, UAI'21, ICLR'21, AAAI'21
- NeurIPS'20, , ICML'26 ECCV'20,
- ICLR'19, IJCAI'19, ICM, '17

